開關(guān)電源內(nèi)部的損耗大致可分為四個(gè)方面:開關(guān)損耗、導(dǎo)通損耗、附加損耗和電阻損耗。這些損耗通常會(huì)在有損元器件中同時(shí)出現(xiàn),下面將分別討論。
開關(guān)電源之與功率開關(guān)有關(guān)的損耗
功率開關(guān)是典型的開關(guān)電源內(nèi)部最主要的兩個(gè)損耗源之一。損耗基本上可分為兩部分:導(dǎo)通損耗和開關(guān)損耗。導(dǎo)通損耗是當(dāng)功率器件已被開通,且驅(qū)動(dòng)和開關(guān)波形已經(jīng)穩(wěn)定以后,功率開關(guān)處于導(dǎo)通狀態(tài)時(shí)的損耗;開關(guān)損耗是出現(xiàn)在功率開關(guān)被驅(qū)動(dòng),進(jìn)入一個(gè)新的工作狀態(tài),驅(qū)動(dòng)和開關(guān)波形處于過渡過程時(shí)的損耗。
開關(guān)電源之與輸出整流器有關(guān)的損耗
開關(guān)電源內(nèi)部的損耗大致可分為四個(gè)方面:開關(guān)損耗、導(dǎo)通損耗、附加損耗和電阻損耗。這些損耗通常會(huì)在有損元器件中同時(shí)出現(xiàn),下面將分別討論。
開關(guān)電源之與功率開關(guān)有關(guān)的損耗
功率開關(guān)是典型的開關(guān)電源內(nèi)部最主要的兩個(gè)損耗源之一。損耗基本上可分為兩部分:導(dǎo)通損耗和開關(guān)損耗。導(dǎo)通損耗是當(dāng)功率器件已被開通,且驅(qū)動(dòng)和開關(guān)波形已經(jīng)穩(wěn)定以后,功率開關(guān)處于導(dǎo)通狀態(tài)時(shí)的損耗;開關(guān)損耗是出現(xiàn)在功率開關(guān)被驅(qū)動(dòng),進(jìn)入一個(gè)新的工作狀態(tài),驅(qū)動(dòng)和開關(guān)波形處于過渡過程時(shí)的損耗。
開關(guān)電源之與輸出整流器有關(guān)的損耗
在典型的非同步整流器開關(guān)電源內(nèi)部的總損耗中,輸出整流器的損耗占據(jù)了全部損耗的40%-65%。所以理解這一節(jié)非常重要。
開關(guān)電源之整流器損耗也可以分成三個(gè)部分:開通損耗、導(dǎo)通損耗、關(guān)斷損耗。
整流器的導(dǎo)通損耗就是在整流器導(dǎo)通并且電流電壓波形穩(wěn)定時(shí)的損耗。這個(gè)損耗的抑制是通過選擇流過一定電流時(shí)最低正向壓降的整流管而實(shí)現(xiàn)的。PN二極管具有更平坦的正向V-I特性,但電壓降卻比較高(0.7~1.1V);肖特基二極管轉(zhuǎn)折電壓較低(O.3~0.6V),但電壓一電流特性不太陡,這意味著隨著電流的增大,它的正向電壓的增加要比PN二極管更快。
分析開關(guān)電源之輸出整流器的開關(guān)損耗則要復(fù)雜得多。整流器自身固有的特性在局部電路內(nèi)會(huì)引發(fā)很多問題。
開通期間,過渡過程是由整流管的正向恢復(fù)特性決定的。正向恢復(fù)時(shí)間tfrr是二極管兩端加上正向電壓到開始流過正向電流時(shí)所用的時(shí)間。對(duì)于PN型快恢復(fù)二極管而言,這個(gè)時(shí)間是5~15ns。肖特基二極管由于自身固有的更高的結(jié)電容,因此有時(shí)會(huì)表現(xiàn)出更長(zhǎng)的正向恢復(fù)時(shí)間特性。盡管這個(gè)損耗不是很大,但它能在開關(guān)電源內(nèi)部引起其他的問題。正向恢復(fù)期間,電感和變壓器沒有很大的負(fù)載阻抗,而功率開關(guān)或整流器仍處于關(guān)斷狀態(tài),這使得儲(chǔ)存的能量產(chǎn)生振蕩,直至整流器最終開始流過正向電流并鉗位功率信號(hào)。
關(guān)斷瞬間,反向恢復(fù)特性起主要作用。當(dāng)反向電壓加在開關(guān)電源之元器件二極管兩端時(shí),PN二極管的反向恢復(fù)特性由結(jié)內(nèi)的載流子決定,這些遷移率受限的載流子需要從原來進(jìn)入結(jié)內(nèi)的反方向出去,從而構(gòu)成了流過二極管的反向電流。與此相關(guān)的損耗可能會(huì)很大,因?yàn)樵诮Y(jié)區(qū)電荷被耗盡前,反向電壓會(huì)迅速上升得很高,反向電流通過變壓器反射到一次側(cè)功率開關(guān),增加了功率管的損耗。
開關(guān)電源之與濾波電容有關(guān)的損耗
輸入輸出濾波電容并不是開關(guān)電源的主要損耗源,盡管它們對(duì)電源的工作壽命影響很大。如果輸入電容選擇不正確的話,會(huì)使得電源工作時(shí)達(dá)不到它實(shí)際應(yīng)有的高效率。
每個(gè)電容器都有與電容相串聯(lián)的小電阻和電感。等效串聯(lián)電阻(ESR)和等效串聯(lián)電感(ESL)是由電容器的結(jié)構(gòu)所導(dǎo)致的寄生元件,它們都會(huì)阻礙外部信號(hào)加在內(nèi)部電容上。因此電容器在直流工作時(shí)性能最好,但在電源的開關(guān)頻率下性能會(huì)差很多。
輸入輸出電容是功率開關(guān)或輸出整流器產(chǎn)生的高頻電流的唯一來源(或儲(chǔ)存處),所以通過觀察這些電流波形可以合理地確定流過這些電容ESR的電流。這個(gè)電流不可避免地在電容內(nèi)產(chǎn)生熱量。設(shè)計(jì)濾波電容的主要任務(wù)就是確保電容內(nèi)部發(fā)熱足夠低,以保證產(chǎn)品的壽命。
開關(guān)電源之附加損耗
附加損耗與所有運(yùn)行功率電路所需的功能器件有關(guān),這些器件包括與控制IC相關(guān)的電路以及反饋電路。相比于開關(guān)電源的其他損耗,這些損耗一般較小,但是可以作些分析看看是否有改進(jìn)的可能。
首先是開關(guān)電源之啟動(dòng)電路。啟動(dòng)電路從輸入電壓獲得直流電流,使控制IC和驅(qū)動(dòng)電路有足夠的能量啟動(dòng)電源。如果這個(gè)啟動(dòng)電路不能在電源啟動(dòng)后切斷電流,那么電路會(huì)有高達(dá)3W的持續(xù)的損耗,損耗大小取決于輸入電壓。
第二個(gè)主要方面是功率開關(guān)驅(qū)動(dòng)電路。如果功率開關(guān)用雙極型功率晶體管,則基極驅(qū)動(dòng)電流必須大于晶體管集電極e峰值電流除以增益(hFE)。功率晶體管的典型增益在5-15之間,這意味著如果是10A的峰值電流,就要求0.66~2A的基極電流。基射極之間有0.7V壓降,如果基極電流不是從非常接近0.7V的電壓取得,則會(huì)產(chǎn)生很大的損耗。
功率MOSFET驅(qū)動(dòng)效率比雙極型功率晶體管高。MOSFET柵極有兩個(gè)與漏源極相連的等效電容,即柵源電容Ciss和漏源電容Crss。MOSFET柵極驅(qū)動(dòng)的損耗來自于開通MOSFET時(shí)輔助電壓對(duì)柵極電容的充電,關(guān)斷MOSFET時(shí)又對(duì)地放電。
開關(guān)電源之與磁性元件有關(guān)的損耗
對(duì)一般設(shè)計(jì)工程師而言,這部分非常復(fù)雜。因?yàn)榇判栽g(shù)語的特殊性,以下所述的損耗主要由磁心生產(chǎn)形式表示,這非常便于使用。這些損耗列于此處,使人們可以對(duì)損耗的性質(zhì)作出評(píng)價(jià)。
開關(guān)電源之與變壓器和電感有關(guān)的損耗主要有三種:磁滯損耗、渦流損耗和電阻損耗。在設(shè)計(jì)和構(gòu)造變壓器和電感時(shí)可以控制這些損耗。
磁滯損耗與繞組的匝數(shù)和驅(qū)動(dòng)方式有關(guān)。它決定了每個(gè)工作周期在B-H曲線內(nèi)掃過的面積。掃過的面積就是磁場(chǎng)力所作的功,磁場(chǎng)力使磁心內(nèi)的磁疇重新排列,掃過的面積越大,磁滯損耗就越大。
開關(guān)電源之電阻損耗是變壓器或電感內(nèi)部繞組的電阻產(chǎn)生的損耗。有兩種形式的電阻損耗:直流電阻損耗和集膚效應(yīng)電阻損耗。直流電阻損耗由繞組導(dǎo)線的電阻與流過的電流有效值二次方的乘積所決定。集膚效應(yīng)是由于在導(dǎo)線內(nèi)強(qiáng)交流電磁場(chǎng)作用下,導(dǎo)線中心的電流被“推向”導(dǎo)線表面而使導(dǎo)線的電阻實(shí)際增加所致,電流在更小的截面中流動(dòng)使導(dǎo)線的有效直徑顯得小了。